Pengaruh proses ultrasonikasi terhadap ukuran serat selulosa dari batang sorgum

Yuli Darni^{1*}, Lia Lismeri¹, Gitri Devi ¹, Muhammad Hanif¹, Muhammad Ridho Ulya¹

¹ Jurusan Teknik Kimia, Fakultas Teknik, Universitas Lampung Jl. Sumantri Brojonegoro No.1 GedongMeneng Bandar Lampung

*E-mail: yuli.darni@eng.unila.ac.id.

Abstrak

Penelitian ini bertujuan untuk mensintesis serat selulosa dari batang sorgum dengan metode alkali-hidrolisis asam-mekanik. Pada proses kimia serat diektraksi dari batang sorgum dengan KOH 4%. Variasi dilakukan pada perlakuan mekanik yaitu waktu ultrasonikasi selama 60, 90, dan 120 menit. Serat selulosa yang diperoleh selanjutnya dianalisis morfologinya dengan menggunakan SEM. Hasil pengamatan morfologi ini menunjukkan bahwa serat tanpa sonikasi berukuran 10,21 mikron, sedangkan serat dengan ultasonikasi 60 menit, 90 menit, dan 120 menit berturut-turut berukuran 10,64 mikron, 9,253 mikron, dan 4,887 mikron. Hasil penelitian ini menunjukkan bahwa semakin lama waktu sonikasi pada rentang yang dilakukan diperoleh ukuran serat selulosa yang semakin kecil.

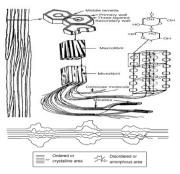
Kata kunci: batang sorgum, serat selulosa, ultrasonikasi

1. Pendahuluan

Selulosa adalah polimer berantai polidispersi β-(1,4)-Dglukosa. Serat selulosa terdiri dari gabungan beberapa mikrofibril, rantai selulosa distabilkan secara menyamping oleh ikatan hidrogen inter dan intramolekul. Mikrofibril tersebut disusun oleh fibril-fibril dasar dimana wilayah monokristalin dihubungkan oleh wilayah amorpus. Secara umum, panjang monokristalin berukuran 100-300 dengan diameter berkisar antara 5-20 nm (Yang & Ragauskas, 2011).

Serat selulosa yang disintesis dari tanaman baik yang berukuran mikro maupun nano dapat

digunakan sebagai bahan pengisi dan penguat. Serat yang diperoleh dari tanaman memiliki keuntungan secara teknis maupun ekonomi. Penggunaan serat alam sebagai pengisi memakan biaya yang lebih lebih mudah murah, proses pemisahannya, densitas yang lebih rendah, ketahanan yang lebih baik, dan kemampuan untuk diurai oleh alam yang lebih baik (Mohanty, et al., 2002). Selain itu, serat alam juga memberikan sifat kekakuan dan kekuatan sehinaga memungkinkan untuk digunakan sebagai bahan pengisi dan penguat, mudah untuk di daur ulang, dan tidak akan patah ketika diproses menjadi bentuk lengkungan yang tajam, tidak rapuh seperti serat gelas.


Pada sisi kekuatan per-berat material, serat alam juga lebih baik saat dibandingkan dengan serat konvensional seperti mika dan gelas digunakan yang umum yang (Eichhorn & Baillie, 2001). Beberapa produk yang telah menggunakan serat alam sebagai bahan pengisi diantaranva adalah polietilen (Prachayawarakorn et al., 2010; Menezes et al., 2009), karet alam (Bras et al., 2010; Pasquini et al., 2010); pati termoplastik (Ma et al., 2005), polipropilen (Qiu et al., 2006; N & Yang, 2009; Kengkhetkit & Amornsakchai, 2012), serta pati (Famá et al., 2009; Dias et al., 2011).

Dalam sintesis selulosa dari biomassa ada beberapa metode yang dapat dilakukan, dimulai dari proses mekanik, kimia, dan semi mekanik atau semi kimia yang merupakan gabungan antara proses kimia dan mekanik seperti yang dilaksanakan pada penelitian ini.

Tanaman sorgum merupakan tanaman serealia yang berasal dari Afrika dan dapat hidup pada daerah tandus. Di Indonesia, tanaman ini pada umumnya dibudidayakan di daerah yang minim sumber air seperti di Gunung Kidul Yogyakarta dan Nusa Tenggara dan pada umumnya dimanfaatkan sebagai ternak. pakan hewan Batang tanaman sorgum mengandung 42% selulosa, 23,5% hemiselulosa, dan 12,6% lignin.

Metode sintesis serat yang dipilih adalah berdasarkan pada metode kimia yang dilakukan oleh Rumpoko Wicaksono (Wicaksono, 2013), sedang metode mekanik dilakukan dengan menggunakan *Ultrasonic Bath* pada frekuensi 50-60 khz. Serat yang dihasilkan ditujukan sebagai bahan pengisi pada bioplastik berbasis pati.

Ultrasonikasi merupakan proses mekanik yang menggunakan gelombang ultrasonik untuk menghasilkan tegangan mekanik yang kuat yang dapat menyebabkan kavitasi, yaitu peristiwa pembentukan, meledaknya pertumbuhan dan gelembung di dalam cairan yang melibatkan sejumlah energi yang sangat besar, sehingga menghasilkan efek panas yang menyebar ke dalam suspensi. Fenomena ini vang dimanfaatkan untuk memisahkan serat selulosa kedalam bentuk yang lebih kecil.

Gambar 1. Struktur serat selulosa (Yang & Ragauskas, 2011)

2. Metodelogi

2.1. Alat

Peralatan yang digunakan dalam penelitian ini yaitu dishmill, ayakan

(100 mesh), ultrasonic bath(Mujigae WUC AO2H), sentrifugal (LG Sentrifugal), SEM (Zeis EVO MA).

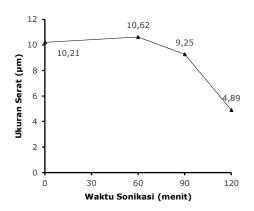
2.2. Bahan

Batang sorgum yang diperoleh dari PT Andini Agro Loka kemudian dengan dikeringkan panas matahari. Batang sorgum yang telah kering kemudian dipotong sebesar dua iari dan digiling menggunakan dish mill hingga menjadi tepung. Tepung batang kemudian sorgum diayak menggunakan ayakan berukuran 100 mesh. Tepung batang yang lolos ayakan 100 mesh kemudian digunakan sebagai bahan baku. Larutan KOH 4% dibuat dari pellet KOH Merck. Larutan H₂O₂ 6% dibuat (Bratachem). dari H_2O_2 50% Larutan H₂SO₄ 6,5 M dibuat dari H₂SO₄ 96% teknis (Bratachem).

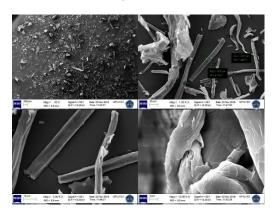
2.3. Metode

Metode sintesis bahan pengisi nano serat selulosa pada penelitian ini menggunakan metode semimekanis. Dimana bahan baku yang batang sorgum mendapatkan pre-treatment secara kimia dilanjutkan dan dengan perlakuan mekanis. Bahan yang berupa serbuk batang sorgum yang telah lolos ayak 100 mesh sebanyak ditimbang 10 kemudian ditempatkan dalam gelas ukur volume 500 ml. Batang tersebut kemudian sorgum dicampur larutan KOH dengan konsentrasi 4%.Perbandingan bahan dan larutan KOH yang

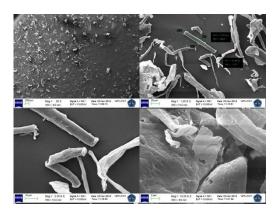
ditambahkan adalah 1:10 (berat /volume).

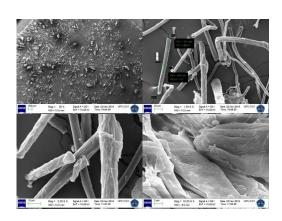

Ekstraksi dilakukan menggunakan hotplate pada temperature 80 °C selama 1 jam. Setelah 1 jam proses pemasakan, selanjutnya dilakukan penyaringan bahan hasil ekstraksi menggunakan kain saring. Bahan disaring kemudian dicuci sehingga menghasilkan air cucian dengan pH 11. Setelah dicuci, bahan kemudian dipucatkan (bleaching) sebanyak dua kali menggunakan H₂O₂ 6% pada suhu 70 °C masingselama 1 iam masina diaduk. Bahan yang sudah dicuci, kemudian dicampur lagi dengan KOH konsentrasi 4%. larutan Lakukan hal ini pada suhu 80 °C selama 1 jam.

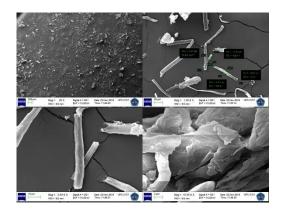
Setelah melalui proses alkali dan bleaching, kemudian dilajutkan dengan perlakuan asam menggunakan H₂SO₄ 6,5 M. Serat yang sudah mengalami perlakuan alkali kemudian didispersikan dalam 200 ml larutan H₂SO₄ 6,5 M dalam gelas beaker dan diaduk. Hidrolisis dilaksanakan pada suhu 60 °C sambil diaduk selama 1 jam, kemudian dicuci dengan akuades sampai pH 6-7. Suspensi yang dihasilkan kemudian disentrifugasi dengan kecepatan 6000 rpm selama 10 menit sehingga endapan diperoleh pulp. Selanjutnya, *pulp* sebanyak 5 gram disuspensikan ke dalam 300 ml akuades dan dilanjutkan dengan perlakuan mekanis menggunakan ultrasonic bath dengan frekuensi


50-60 khz selama 60, 90, dan 120 menit.

3. Hasil dan Pembahasan


Dalam penelitian ini dilaksanakan sintesis mikro serat selulosa dari batang tanaman sorgum denga nmenggunakan metode alkali *bleaching* – hidrolisis asam mekanik. Pada proses kimia serat mengalami perlakuan yang sama baik dalam konsentrasi larutan kimia vang digunakan maupun waktu kontaknya. Variasi dilakukan pada waktu perlakuan mekanik yaitu serat disonikasi selama 60, 90, dan 120 menit.


Gambar 2. Pengaruh waktu sonikasi terhadap ukuran serat selulosa


Gambar 3. Analisis SEM serat selulosa tanpa sonikasi pada perbesaran 50, 1000, 3000, dan 10000x

Gambar 4. Analisis SEM serat selulosa dengan sonikasi 60 menit pada perbesaran 50, 1000, 3000, dan 10000x

Gambar 5. Analisis SEM serat selulosa dengan sonikasi 90 menit pada perbesaran 50, 1000, 3000, dan 10000x

Gambar 6. Analisis SEM serat selulosa dengan sonikasi 1200 menit pada perbesaran 50, 1000, 3000, dan 10000x

Gambar 2 menunjukkan pengaruh lama waktu sonikasi terhadap ukuran serat selulosa. Pada grafik tersebut dapat dilihat bahwa lama waktu penerimaan perlakuan mekanik memiliki pengaruh terhadap ukuran serat meskipun pada hasil sonikasi 60 menit belum terlihat pengurangan ukuran pada serat selulosa.

Gambar 3 sampai gambar 6 merupakan hasil analisis morfologi menggunakan SEM dengan perbesaran 50, 1000, 3000, dan 10000 kali. Dari keempat gambar tersebut dapat terlihat bahwa pada serat yang diberi perlakuan sonikasi selama 120 menit di perbesaran 50 kali bahwa gumpalan serat terlihat lebih sedikit dibandingkan pada tidak mendapat serat yang perlakuan maupun yang diberi perlakuan 60 dan 90 menit.

Pada dasarnya, perlakuan mekanik pada sintesis serat selulosa adalah lebih kepada pemisahan serat yang saling menempel satu sama lain tujuannya agar saat diaplikasikan sebagai bahan pengisi, serat dapat terdispersi dengan baik.

Berdasarkan teori, serat tanaman yang diproses menggunakan hidrolisis asam seharusnya dapat menghasilkan serat yang berukuran nano seperti yang dilakukan pada sintesis *nanowhiskers* dari bagas tapioka (Pasquini et al., 2010;

Wicaksono, 2013), namun pada penelitian ini serat yang dihasilkan masih berukuran mikro meskipun telah mengalami proses mekanik dengan berupa sonikasi dalam periode waktu tertentu.

Proses kimia yang dilaksanakan dalam penelitian ini merupakan metode yang telah dilakukan oleh Rumpoko Wicaksono dan serat yang dihasilkan adalah berukuran 5-8 nm. Ada perbedaan sumber serat yang diproses yaitu bahan yang digunakan pada penelitian tersebut merupakan ampas tapioka yang berukuran 50 mikron. Perbedaan struktur serat yang digunakan sebagai bahan baku dan perbedaan pada perlakuan mekanik menyebabkan ukuran serat yang digunakan juga berbeda. Pada penelitian ini, serat yang telah mengalami proses kimiawi dan mekanik memiliki ukuran vang berkisar antara 4 - 10 mikron.

4. Kesimpulan

Serat selulosa yang dihasilkan oleh penelitian ini berkisar antara 4-10 mikron. Waktu ultrasonikasi pada selulosa yang telah diekstrak melalui proses kimia memiliki pengaruh terhadap ukuran serat yang dihasilkan. Pada frekuensi tetap, diketahui bahwa semakin lama serat diberi perlakuan maka semakin kecil pula ukurannya. Hal tersebut dapat terlihat pada ukuran dihasilkan vana sebelum ultrasonikasi yaitu 10, 21 mikron, setelah ultrasonikasi 60 menit yaitu 10,64 mikron, setelah ultrasonikasi 90 menit yaitu 9,25 mikron, dan setelah ultrasonikasi 120 menit yaitu 4,89 mikron.

Ucapan Terimakasih

Ucapan terimakasih kami ucapkan kepada Prof. Dr.Sungkono dan PT Andini Agro Loka Lampung Tengah atas bantuan dalam menyediakan bahan baku berupa tanaman sorgum, Laboratorium Sentra Inovasi Teknologi atas fasilitas dan penelitian analisis, Laboratorium Tanaman II Politeknik Negeri Lampung atas fasilitas penggilingan batang tanaman sorgum.

Daftar Pustaka

- Bras, J. et al., (2010) Mechanical, Barrier, and Biodegradability Properties of Bagasse Cellulose Whiskers Reinforced Natural Rubber Nano. *Industrial Crop Product*, Issue 32, 627-633.
- Dias, A., Müller, C., Larotonda, F. & Laurindo, J., (2011) Mechanical and Barrier Properties of Composites Film Based on Rice Flour adn Cellulose Fibers. *LWT-Food Science Technology*, Issue 44, 535-542.
- Eichhorn, S. & Baillie, C., (2001) Review: Current International Research Into Cellulosic Fibres and Composites. *Journal of Material*, Issue 6, 2107-2131.
- Famá, L., Gerschenson, L. & Goyanes, S., (2009) Starch-

- vegetable Fibre Composites to Protect Food Product. Carbohydrate Polymer, Issue 75, 230-235.
- Kengkhetkit, N. & Amornsakchai, T., (2012) Utilisation of Pineapple Leaf Waste for Plastic Reinforcement: 1. A Novel Extraction Method for Short Pineapple Leaf Fiber. *Industrial Crop Production*, Issue 40, 55-61.
- Ma, X., Yu, J. & Kennedy, J., (2005)
 Studies on the Properties of
 Natural Fibers-reinforced
 Thermoplastic Starch
 Composites. *Carbohydrate Polymers*, Issue 62, 19-24.
- Menezes, A., Siqueira, G., Curvelo,
 A. & Dufresne, A., (2009)
 Extrusion and Characterization
 of Functionalized Cellulose
 Whiskers Reinforced
 Polyethylene Nanocomposites.
 Carbohydrate Polymers, Issue
 50, 4552-4563.
- Mohanty, A., Misra, M. & Drzal, L., (2002) Sustainable Biocomposites from Renewable Resources: Opportunities and Challanges in the Green Materials World. *Journal of Polymer Environment,* Issue 10, 19-26.
- N, R. & Yang, Y., (2009) Properties and Potential Applications of Natural Cellulose Fibers from the Bark of Cotton Stalks.

- Bioresource Technology, Issue 100, 3563-3569.
- Pasquini, D. et al., (2010)Extraction Cellulose of Whiskers from Cassava Bagasse and Their Applications as Reinforcing Agent in Natural Rubber. Industrial Crop Production, Issue 32, 486-490.
- Prachayawarakorn, J., Sangnitidej, P. & Boonpasith, P., (2010) Properties of Thermoplastic Rice Starch Composites Reinforced by Cotton Fiber or Low Density Polyethylene. *Carbohydrate Polymers*, Issue 81, 1059-1068.
- Qiu, W., Endo, T. & Hirotsu, T., (2006) Structure and Properties of Composites of

- Highly Crystaline Cellulose with Polypropylene: Effects of Polypropylene Molecular Weight. *Europe Polymer,* Issue 42, 1059-1068.
- Wicaksono, R., (2013) Isolasi Nanoserat Selulosa dari Ampas Tapioka dan Aplikasinya Sebagai Bahan Pengisi Film Tapioka, Thesis, Sekolah Pascasarjana Institut Pertanian Bogor.
- Yang, L. & Ragauskas, A. J., (2011) Cellulose Nano Whiskers as a Reinforcing Filler in Polyurethanes. In: B. Reddy, ed. Advances in Diverse Industrial **Applications** of Nanocomposites. Shanghai: InTech, 18-36.